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Systems Factorial Technology (SFT) is a popular framework for that has been used to investigate
processing capacity across many psychological domains over the past 25� years. To date, it had been
assumed that no processing resources are used for sources in which no signal has been presented (i.e.,
in a location that can contain a signal but does not on a given trial). Hence, response times are purely
driven by the signal-containing location or locations. This assumption is critical to the underlying
mathematics of the capacity coefficient measure of SFT. In this article, we show that stimulus locations
influence response times even when they contain no signal, and that this influence has repercussions for
the interpretation of processing capacity under the SFT framework, particularly in conjunctive (AND)
tasks—where positive responses require detection of signals in multiple locations. We propose a
modification to the AND task requiring participants to fully identify both target locations on all trials.
This modification allows a new coefficient to be derived. We apply the new coefficient to novel
experimental data and resolve a previously reported empirical paradox, where observed capacity was
limited in an OR detection task but super capacity in an AND detection task. Hence, previously reported
differences in processing capacity between OR and AND task designs are likely to have been spurious.
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In the world around us, there are an almost unlimited number of
sources of information; yet we take in or process comparatively
few of these sources. This is in part because of our limited capacity
to process information (Kahneman, 1973). To understand how any
cognitive system accounts for processing in complex multisource
environments, we must understand several key properties of how

the system operates when presented with multiple sources of
information. Broadly speaking, any cognitive system may be de-
fined by the combination of four key properties: capacity (effi-
ciency under load), architecture (serial vs. parallel vs. coactive
consideration of sources), stopping rule (how many sources must
be processed before processing can terminate), and (in)dependence
(whether channels processing information are affected by other
channels; Townsend, 1974; Townsend & Ashby, 1983; Townsend
& Wenger, 2004a).

Systems Factorial Technology (SFT; Little, Altieri, Fific, &
Yang, 2017; Townsend & Nozawa, 1995; Townsend & Wenger,
2004a) is a powerful nonparametric framework that allows classi-
fication of the architecture, stopping rule, capacity, and indepen-
dence of a cognitive system. SFT has been used to identify
processing architecture in simple detection (Eidels, Townsend,
Hughes, & Perry, 2015; Townsend & Nozawa, 1995), visual
perception (Fific, Nosofsky, & Townsend, 2008; Little, Nosofsky,
Donkin, & Denton, 2013), and recognition memory (Townsend &
Fifić, 2004), among other domains (see Algom, Fitousi, & Eidels,
2017; Cooper & Hawkins, 2019; Fitousi & Algom, 2018; Howard,
Belevski, Eidels, & Dennis, 2020; Thiele, 2015; Yang, Fifić,
Chang, & Little, 2018, for recent applications).

The capacity measures of SFT have been used to show the effect
of increased load, often in the form of additional to-be-processed
items, on parallel processing (Eidels et al., 2015), comment on
dual-task interference in working memory designs (Heathcote et
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al., 2015), and shed light on reading difficulties (Houpt, Sussman,
Townsend, & Newman, 2015). The capacity measures of SFT have
also been linked with parametric models of processing (Donkin,
Little, & Houpt, 2014; Eidels, Donkin, Brown, & Heathcote,
2010), and formal statistics have been developed to facilitate the
assessment of capacity (Houpt & Townsend, 2012). The capacity
coefficient has been widely applied across a diverse range of
psychological domains to further theoretical developments and
make novel inferences (see, e.g., Blaha, 2017; Chang & Yang,
2014; Fitousi, 2015; Garrett, Howard, Houpt, Landy, & Eidels,
2019; Hawkins, Houpt, Eidels, & Townsend, 2016; Heathcote et
al., 2015; Howe & Ferguson, 2015; Johnson, Blaha, Houpt, &
Townsend, 2010; Yamani, Neider, Kramer, & McCarley, 2017;
Yankouskaya, Sui, Moradi, Rotshtein, & Humphreys, 2017; Yu,
Chang, & Yang, 2014, for just a small selection of recent work).

Fundamentally, capacity analysis relies on comparing response
times when some target is presented in isolation or as part of a
larger visual display. In the measure of capacity, redundant target
response times (i.e., from displays containing two distinct targets)
are compared with response times derived from each display
where a target was presented in isolation (see, e.g., Altieri, Fifić,
Little, & Yang, 2017).1 For single and double target displays to be
directly comparable, it must be assumed that only the target item
contributes to the observed processing time (else two nonequiva-
lent processes may be contrasted). In this article, we show that the
capacity measure can be affected by nontarget items. Even when a
single target is presented in isolation, the null channel (not con-
taining any stimulus) attracts nonnegligible processing time, con-
trary to previous assumptions. Prior work has shown that distrac-
tors can influence the measure of capacity (Little, Eidels, Fific, &
Wang, 2015); here, we show that the absence of information can
also influence the measure of capacity. We first demonstrate this
finding, and discuss its profound implications; finally, a potential
remedy is developed and tested later in this article.

The Redundant Target Task

In a prototypical SFT study (see, e.g., Eidels et al., 2015), a
small dot of light (the target) requiring detection is presented in
either or both of two locations (this is often termed the Redundant
Target Task; see, e.g., Altieri et al., 2017; Houpt, Blaha, McIntire,
Havig, & Townsend, 2014). The Redundant Target Task can be
divided into two cases, based on the decisional stopping rule
applied to the task. In the OR task, participants are instructed to
respond affirmatively when a target is presented in either Location
A or Location B or in both locations. Only if neither target is
present do participants respond negatively. These instructions im-
ply that processing of all target-containing trials should terminate
as soon as any target is detected (a self-terminating response rule).
In the AND task, participants are instead asked to respond affir-
matively only if a target is present in both Location A and
Location B. Here, if a target is present in only one or neither of the
two locations, the participant must respond with a negation.

To set the scene, consider a redundant target detection task
where a target item, say the letter X, could be presented in two
locations, one location only, or neither location. The nontarget
locations contain no stimulus, and we refer to them as no signal or
null channels. Importantly, participants are always required to
monitor both stimulus locations for potential targets. We will refer

to this as the standard SFT task throughout this article. In a variant
of the task, no signal locations are instead filled by the distractor
item(s), Os, so that no-target trials consist of the display OO (yet
still require a negative response), and a single-target trial may
display XO. In such a task, the decision for participants is identi-
cal, the only difference is the presence of a distractor in nontarget
locations (see the study by Ben-David, Eidels, & Donkin, 2014).
We refer to this variant as the distractor modified redundant-target
task. Figure 1 illustrates the OR and AND cases of the task, with
white dots specified as targets and dark dots as distractors.

Little et al. (2015) demonstrated that the presence of a distractor
modified the distribution of response times from the standard
target/no-signal version of the redundant target task, as “with distrac-
tors, single-target displays have information to process in both chan-
nels” (Little et al., 2015, p.29). For example, the distribution of
processing times for single target trials from a serial model would be
altered if the distractor was processed before the target compared to
the case where only the target was processed. Here, we go further to
assert that even in the standard double-factorial paradigm, the no-
target channels might also attract processing. This is contrary to the
assumptions of the standard capacity measure where it is assumed that
“the absence of any information may attract only negligible process-
ing” (Little et al., 2015, p.29). This assumption is implicit in all
formulations of the capacity coefficient (Houpt & Townsend, 2012;
Townsend & Nozawa, 1995; Townsend & Wenger, 2004b). How-
ever, we present compelling empirical evidence that our assertion is
true: Nontarget locations contribute to response times even when they
contain no signal.

Evidence for Nontrivial Absence Processing

To examine whether or not the no-signal channels are influenc-
ing processing, we rely on the fact that SFT designs often manip-
ulate the salience of each target (e.g., the brightness of a dot of
light) to selectively influence the completion time of each process-
ing channel (i.e., the time taken to process each source or location).
The salience manipulation is useful in the estimation of processing
architecture; this requires examining combinations of salience
(e.g., trials where both targets are high salience vs. trials where one
target is low salience) to ensure that a manipulation designed to
speed up or slow down processing in a given channel has the
desired effect. This effect is a necessary assumption for applying
tools that differentiate processing architecture (see Houpt et al.,
2014). To examine the no-signal process, we compare single-target
trials in the OR versus AND task designs. If observers can use the
absence of a signal to drive a response, then we should find that
there is little or no effect of manipulating salience in the single-
target trials. Note that we do not suggest salience manipulation is
necessary for capacity estimation, simply that, when present, it
provides a useful check for our arguments.

Because of the difference in decision rules, decisions in OR
tasks can terminate when a target is detected. If a parallel self-
terminating strategy is used (and assuming stochastic indepen-
dence between the processing channels; see, e.g., Eidels, Houpt,
Altieri, Pei, & Townsend, 2011), response time may be unaffected

1 Note that a recent development extended capacity measures to cover
accuracy as well (Townsend & Altieri, 2012) we do not treat this approach
in the present article.
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by either distractors or no-signal processes (see Little et al., 2015
and Figure 2a). However, in the AND case, even the benchmark
parallel exhaustive model would be influenced by any nontarget
(distractor or otherwise) that attracted processing time (Little et al.,
2015). Little et al. (2015) note that in the distractor-modified-AND
task, participants could frame their exhaustive target detection task

as a self-terminating distractor detection task. There is no reason
equivalent behavior could not be exhibited in the no-signal variant of
the task, and under this framing response times would naturally be
influenced by the null location(s). Consequently, whether the system
truly processes all stimulus locations exhaustively or the framing of
the task becomes self-termination on a null location, the nontarget
location should always be checked. If this attracts processing time the
nontarget location would contribute to the observed response time of
the system.

If the observed response times in the standard SFT task are
determined exclusively by the target-processing channel, as is
typically assumed (Little et al., 2015; Townsend & Wenger,
2004b), low salience targets should be processed slower than high
salience targets in both double and single-target trials, for both OR
and AND task designs. This salience effect is routinely tested in
double-target trials (Houpt et al., 2014) but typically not examined
in single-target trials. If the salience effect is present in double-
target trials as well as single-target trials (particularly in the AND
task), we can safely assume that the no-signal channel attracts
negligible processing time. However, if the salience manipulation
is successful in double-target but not single-target trials in the
AND case, this strongly suggests that the no-signal channel influ-
ences the processing time. This influence could manifest in one of
two ways; either (a) the system exhaustively processed both chan-
nels and the no signal process ‘washed out’ the target salience
manipulation or (b) the system self-terminated on the nontarget
location. In either case, the interpretation of the capacity coeffi-
cients would be compromised by the processing time attached to
the no-signal channel in the same way that distractors affected the
coefficient in Little et al.’s (2015) work.

Figure 3 shows a single subject’s data from Eidels et al.’s (2015)
within-subjects dot detection task, data that are contained within

Figure 1. Distractor modified redundant-target detection task. White dots
are target items, dark dots are distractors. In the standard detection version
of these tasks the dark dots would be absent, and no signal would be
presented in that location. DT � double target; ST � single target,
(subscript A and B denote individual target locations); NT � no target.

Figure 2. (Top) OR task design. Processing terminates on the fastest
target channel to complete on both single and double target displays.
(Bottom) AND task design. Processing terminates on the slowest target
process in double-target displays but on the absent channel on single-target
displays. Single-target channels are defined only for Location A for con-
venience, but the same relationship holds for Location B with channels
reversed. A |DT refers to the channel processing a target in Location A
given it was presented in the context of both targets, �B |STA refers to the
process determining Location B did not contain a target given only target
A was shown, and so on. DT � double target; ST � single target,
(subscript A denote individual target locations).
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Figure 3. Empirical data displaying differential effects of target salience
in OR and AND task. (Top) High- and low-salience single-target trials
from an OR task. (Bottom) High- and low-salience single-target trials from
the same subject’s AND task. All panels show cumulative distribution
functions of the response time to single-target trials for both high and low
salience targets. See the online article for the color version of this figure.
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the ‘sft’ R package (Houpt et al., 2014), and have been reported in
a number of publications (Bushmakin, Eidels, & Heathcote, 2017;
Eidels et al., 2015; Houpt & Townsend, 2010; Townsend & Eidels,
2011). These data use a canonical dot-detection task with a within-
subjects design (the same subjects completed the OR and AND
tasks) and have thousands of trials per subject. The data are often
used to assess the suitability of new analysis techniques (Houpt &
Fifić, 2017; Houpt, Heathcote, & Eidels, 2017; Houpt, MacEach-
ern, Peruggia, Townsend, & Van Zandt, 2016; Houpt &
Townsend, 2010).

In the OR task there is a clear effect of salience on the process-
ing times of single-target trials, as expected. This is shown by the
separation between the high and low salience cumulative distribu-
tion functions of response time. In the AND task, the same subject
shows no salience effect at all (in fact the low and high salience
response times almost completely overlap). This pattern holds for
most subjects in that data set.

To quantify the missing salience effect, we applied Heathcote,
Brown, Wagenmakers, and Eidels’s (2010) Bayesian, distribution-
free test of stochastic dominance to each pairwise comparison of
subject (n � 9) by stimulus location (A and B), for both the OR
and AND data sets (which were within-subjects). We found that in
the OR task all 18 tests showed strong evidence (BF10 � 10) for
stochastic dominance (such that FH(t) � FL(t) where FH(t) is the
cumulative distribution function of response times for the high
salience single-target trials), showing all subjects responded
slower to the low salience item(s) even on single target trials. In
the AND task, only four of the 18 comparisons showed even
moderate evidence (BF10 � 5) for stochastic dominance in
the AND case, and 10 of the 18 comparisons showed at least
moderate evidence in favor of no difference. Thus for most sub-
jects there was no difference in response time to the low and high
salience single-target items, contrary to their responses in the OR
task. This pattern of results is inconsistent with the assumption that
no-signal channels do not contribute to empirically observed re-
sponse times in standard SFT tasks.

Although these data show differential effects between OR and
AND tasks, it is possible that no-signal channels attract processing
in the OR paradigm as well. As shown in Figure 2a, decisions in
OR tasks should only terminate based on the detection of a target
under a task-appropriate self-terminating strategy (assuming con-
text invariant, independent processing channels). Therefore, the
effect of no-signal processes would be masked in these response
time data. The effect could better be teased apart if serial process-
ing were observed in the OR task; however, the results from the
AND task are compelling enough in their own right.

Implications

The above empirical results suggest that the no-signal location
attracts nonnegligible processing time. Hence, the assumption un-
derlying the capacity coefficient about how the theoretical single
targets map onto the data is incorrect, because people do not
process the single targets in the AND task in the manner assumed
by the theory. Little et al. (2015) demonstrated the effect of
distractor items on processing times for the redundant target task;
generally, the introduction of a distractor altered the response time
distributions for the single target trials. It is unnecessary to repeat
their derivations here; instead, we direct readers to the original

article. We suggest that those same derivations generalize to all
redundant target tasks, with a modification to generalize the dis-
tractor component in Little et al.’s work (the X and Y terms) to
encompass all nontarget locations (whether they contain distrac-
tors or no-signal). With this modification we propose that the
capacity predictions for the five standard SFT models are always
of the R(t) form expressed in Table 1 of Little et al. (2015, p. 31).
To sum up, nontarget processes can affect the predictions of all
models (combinations of architecture and stopping rule) in both
the OR and AND task; however, the baseline independent unlim-
ited capacity parallel model in the OR task will not exhibit changes
in C(t)—see below.

The two parallel models are contrasted in Figures 2a and 2b. In
that figure, we depict a parallel exhaustive model that self-
terminates on the nontarget location, which seems the most parsi-
monious strategy in an AND task; however, the capacity predic-
tions are affected even when assuming completely exhaustive
processing (cf. Little et al., 2015). One can intuit how serial
models will always be affected by the nontarget processing time
regardless of stopping rule as the cognitive system has no a priori
way to avoid randomly selecting the nontarget location on some
trials.

Although the null-channel may influence processing in both OR
and AND tasks, the specific combination of self-terminating par-
allel processing with independent processing channels (the “stan-
dard OR model”) would not have its capacity predictions altered.
To intuit why this is, readers are again directed to Figure 2a.
Because the decision rule in the OR task requires at least one target
to be identified in both single and double-target trials, only the
successful termination of a target process should terminate pro-
cessing. Thus the nontarget location should not contribute to the
response time of the system in the specific case of parallel self-
terminating processing. For this reason we suspect that reported
capacity coefficients from OR tasks may be less affected by our
findings, as capacity is of perhaps most interest when processing is
parallel (serial models are generally assumed to be quite ineffi-
cient, see, e.g., Townsend & Nozawa, 1997), and generally inde-
pendence is assumed because it cannot be directly tested (Eidels et
al., 2011).2

In the AND task, even the benchmark parallel exhaustive model
with unlimited capacity does not necessarily predict C(t) � 1 for
all t under the distractor-modified coefficient (Little et al., 2015).
The relative processing speed for distractor channels (and now
nontargets more generally) can affect the response time distribu-
tion of single-target trials and therefore modify the capacity coef-
ficient. In Figure 4, we illustrate the effect of nontarget processing
times on the capacity coefficient generated by the benchmark
parallel exhaustive model. In these simulated data, we affected the
processing speed of only the nontarget decision process relative to

2 It is worth pointing out here, and we assume throughout the discussion
of theoretical predictions, that processing rates across different stimuli
maintain context invariance (see e.g., Ashby & Townsend, 1986; Colonius,
1986, 1990; Colonius & Townsend, 1997; Yang et al., 2018). That is, the
marginal distribution for a left-hand target is the same regardless of
whether the right-hand target contains another target, a distractor, or
indeed, no target. The same is assumed for the target in the right channel
and the processing of absent information in either location. We note that
Townsend and Wenger (2004b) identify cases where context-invariance
does not hold but do not treat those cases here.
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the target process. The generating model always has “unlimited
capacity,” in that the processing rate of the target process is
identical in both single and double-target trials. We allowed the
simulation to self-terminate upon determining that a location con-
tained no-signal in single-target trials (for comparison, most pre-
vious approaches have not simulated an absent process at all, cf.
Townsend & Wenger, 2004b). All simulations were generated by
a Linear Ballistic Accumulator model (LBA; Brown & Heathcote,
2008) with an accumulator for each channel (target and nontarget).
We show that manipulating the nontarget processing rates is suf-
ficient to cause CAND (t) to range from limited to super capacity,
without any change to the target-processing rate as a function of
load. To reiterate, in all cases the generating model is unlimited
capacity—the target processing rate is unaffected by the other
channel.

Figure 4 shows that overestimation of capacity (i.e., C(t) � 1
when true capacity is unlimited) results when the nontarget deci-
sion processes are slower to complete than target decision pro-
cesses. In such cases, the single-target response times appear
artificially slow relative to the double-target because they are
driven by a slower (but unrelated to the target) process. This gives
the appearance of a processing benefit under load and thus C(t) �
1. Importantly, the overestimation will occur whether we assume
self-termination on absent processes, or fully exhaustive process-
ing where the nontarget process is sufficiently slower than the
target. Observe that when nontarget processes take the same time
as target processes, CAND (t) � 1 for all t, as FY(t) � FA(t) (where
FY(t) is the cumulative distribution function of nontarget process-
ing times). This is essentially a newly identified form of model
mimicry (see, e.g., Townsend, 1972) as the result arises from the
two processes (nontarget and target) coincidentally displaying
similar processing times. As the nontarget process becomes faster
or slower relative to the target process, the coefficient ranges from
limited capacity to super capacity, respectively.

We draw particular attention to the case in Figure 4 in which the
nontarget channel attracts slower processing time than the target.
In this case, as noted above, the capacity coefficient incorrectly

(based on the “true” model) shows super capacity. In the proto-
typical SFT studies using dot stimuli, C(t) is typically reported as
limited in OR tasks and super in AND tasks (see, e.g., Eidels et al.,
2015). This disparity has been observed within the same subject
using the same stimuli. Hence, we have a paradox: despite the
subject’s application of the same architecture (parallel) and a task
appropriate stopping-rule (i.e., self-terminating for OR tasks and
exhaustive for AND tasks), capacity is not commensurate across
the OR and AND tasks (Eidels et al., 2015). We propose that
capacity is often empirically overestimated in the AND task be-
cause of a slower nontarget process, and we show evidence to
support this claim at the end of this article.

We make several observations here: First, it is important to note
the shortcoming described in this article relates to the mapping
between the capacity coefficient and empirical data, and does not
invalidate the capacity coefficient itself. This distinction is impor-
tant, because it allows for the possibility of adapting the empirical
setup to match the theoretical underpinnings (we do exactly this
below). Second, only single-target trials are affected by the no-
signal channel processing. Any double-target focused analyses
(including mean interaction contrast [MIC] and the survivor inter-
action contrast [SIC] calculations) are unaffected as they do not
contain a nontarget channel, thus conclusions drawn regarding
processing architecture and stopping rule using these SFT mea-
sures continue to hold. Any capacity analyses that accounted for
the effect of nontarget processes, or from empirical setups that
could mitigate those concerns, would similarly continue to hold
(however, we are not aware of any such designs).3

Third, although in principle the capacity predictions for all
models in both OR and AND tasks are affected when nontarget
locations are assigned nontrivial processing time, the baseline
parallel self-terminating model in the OR task will give identical
capacity predictions with or without nontarget influence (assuming
independent processing channels; see above). In cases where the
capacity predictions in an OR task are affected by nontarget
processing, there are other factors, such as serial processing or
exhaustive processing, that can explain the inefficient processing;
hence further assessment of capacity may be of less importance in
those cases. Practically, results from the AND task are more
adversely affected as, due to nontarget influence, even the bench-
mark or standard parallel model in that case can exhibit limited or
super capacity coefficients regardless of the true capacity of the
system.

Even in the AND task, some researchers employ strategies that
may mitigate the effect of processing nontargets—though not for
that reason. Most notably, researchers such as Eidels et al. (2015)
have previously substituted single-target trials from an OR task
into the numerator of CAND (t), contrasted against AND task
double-target trials. Those authors cited concerns about different
response mappings influencing response times (single-targets are
mapped to a no response in the AND task where the double-targets
are mapped to a yes response; see, e.g., Wason, 1959 for evidence
that no responses might be slower than yes responses). Although
aimed at a different issue entirely, the substitution strategy may

3 To date, trials containing no target at all have not been utilized within
the SFT analyses but are included in the experiment to control the base rate
of each response.

Figure 4. CAND (t) when the Parallel Exhaustive model is simulated to
terminate on the nontarget process. The simulation highlights how varying
the relative processing time of the nontarget channel compared with the
target channel, while holding true capacity fixed, has marked effects on the
estimates of the capacity coefficient. Simulations were generated by a
Linear Ballistic Accumulator model (Brown & Heathcote, 2008), and bear
out the results hypothesized by Little et al. (2015). The terms slower and
faster refer to the speed of the nontarget channel relative to the target—that
is, in the slower condition nontarget processes take comparatively longer to
complete. See the online article for the color version of this figure.
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have alleviated the effect of nontarget locations, assuming the OR
task was completed with a parallel self-terminating strategy. Ca-
pacity results reported using this substitution strategy may be more
reliable than those generated directly from AND task data. How-
ever, substitution is not always possible. First, it requires addi-
tional data collection; at minimum, several blocks of pure single-
target OR rule trials would need to be collected, removed from the
context of the rest of the AND task, relying on the assumption that
processing does not change between these experimental contexts.
Additionally, one of the prime benefits of the AND task is that it
addresses questions that OR tasks cannot, such as questions about
holistic processing (see, e.g., Fifić & Townsend, 2010), or classi-
fication based on several rules (Little et al., 2013). These factors
may not be readily amenable to OR designs (or at least the
questions raised by the two designs may be different), yet process-
ing capacity can still be of concern in those cases. Therefore, an
approach to remedy the issues identified above within a purely
AND task design would be a useful contribution. Unfortunately,
the Resilience functions developed by Little et al. (2015) cannot be
applied to the no-signal version of the AND task because salience
of a null signal cannot be manipulated.

Thus far we have demonstrated that the assumption that no-
signal locations do not contribute to processing speed is likely to
be incorrect. We then demonstrated how relaxing this assumption
allows C(t) to change in ways that do not reflect the actual
processing capacity. We next develop a practical solution to this
issue. As noted above, the issues outlined thus far relate to the
mapping between the theoretical capacity coefficient and the em-
pirical data. That is, the theory does not account for nontarget
processing, which appears to be unavoidable in empirical applica-
tions. Therefore, if we could suitably modify the empirical setup
such that the nontarget processes could be accounted for, the
capacity coefficient could be implemented without concern. We
suggest that if processing in the AND task could be assumed to be
completely exhaustive (i.e., both locations were always processed
to completion), it would be possible to factor out the effect of the
nontarget channel from the response time distributions. However,
the empirical results presented earlier do not preclude self-
termination on the nontarget location; in fact, we believe this
strategy to be the most parsimonious account of AND task pro-
cessing.

Hence, for the remainder of the article, we propose a modified
version of the AND task that requires full-identification of each
stimulus location (i.e., separate target identification for each loca-
tion). This results in a change from two responses to four, and if
we assume a dot task with left and right locations, the design and
stimulus space would be as depicted in Figure 5. We hereafter refer
to this task as the modified-AND task.

Importantly, in the new task, responses will always terminate on
the slowest channel regardless of what it contains (see Figure 6).
That is, we remove the possibility for self-termination on nontarget
channels, because accurate responding requires the unique identi-
fication of both Locations A and B. Conveniently, this property
allows a modified capacity coefficient to be derived. The deriva-
tion relies on the fact that the response time distribution for each
display type is known to be an maximum rule combination of both
channel completion times. The resulting coefficient relies on an
additional assumption that is not made by the existing capacity
coefficients: that context invariance holds for no-signal processes

(that is, we assume that in the special case where the nontarget
location contains no-signal, that process is unaffected by the pres-
ence of a target in the neighboring channel, see Colonius, 1986,
1990).

Deriving a New Capacity Coefficient

Before presenting the formal derivations, we provide a brief
overview of our mathematical endeavor. As discussed in this
article, Townsend and Wenger’s (2004b) CAND (t) coefficient
provides a powerful and unquestioned assessment of processing
capacity. However, the existing empirical application of this co-
efficient relies on assumptions that we demonstrate to be incorrect.
That is to say, the flaws we point out relate to a mismatch between
theory and empirical application, and do not discount the relevance
of the existing theoretical structures. We modified the empirical
setup as described above to force exhaustive processing (see also
Eidels, Ryan, Williams, & Algom, 2014 for a different treatment
of experimental designs to force specific response strategies). This
helps ensure that both target and nontarget processes contribute to
the observed response time on every trial. With this knowledge we
aim to factor out the influence of nontarget processes on the
capacity coefficient. To do this, we build on previous develop-
ments concerning the UCIP assumptions (Little et al., 2015;
Townsend & Nozawa, 1995; Townsend & Wenger, 2004b). Thus,
we begin our derivations using Townsend and Wenger’s coeffi-
cient as a starting point.

Little et al. (2015) show that attributing nontrivial processing
time to distractor channels results in the modification of the
standard capacity coefficient (Equation 1) for AND tasks (derived
in Townsend & Wenger, 2004b) such that:

CAND(t) �
log[FA(t) · FB(t)]

log[FAB(t)] (1)

¡
log[FAY(t) · FXB(t)]

log[FAB(t)] (2)

where X and Y refer to the distractor presented in the left or right
locations respectively. The work presented in this article suggest
these X and Y terms should be generalized to include any nontar-
get, including cases where no-signal is presented. For clarity, we
hereafter replace the X and Y terms with the terms �A and �B,
respectively, to reflect that for the remainder of the article we

Figure 5. Standard and modified-AND task designs. The modified task
requires unique identification of both stimulus locations, and as such the
number of response options increases from two to four. DT � double
target; ST � single target (subscript A and B denote individual target
locations); NT � no target.
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specifically refer to the no-signal variant of the nontarget (i.e., �A
refers specifically to the case where no-signal is presented in
Location A). For written clarity we use the terms DT, STA, STB,
and NT to refer to the four possible stimulus displays.

The modified coefficient in Equation 2 includes additional pro-
cesses not specified in Equation 1 (namely the no-signal channels).
The form of the coefficient specified in Equation 2 is the likely
result of current empirical applications of the capacity coefficient
in AND tasks, given the high probability that single-target re-
sponse times are contaminated by nontarget processes. That is,
with the existing empirical setup we cannot obtain data that match
the theoretical coefficient, and feeding such data into the formula
instead results in a modified comparison. This modified coefficient
may elicit values of CAND (t) that do not reflect the underlying
capacity of the system, that is, changes in the X and Y terms alter
the function despite the relationship between the target processes
remaining constant.

Using the modified-AND task and invoking an assumption that
the no-signal process is context invariant, we can derive a modified
form of Equation 2 that allows the effects of the no-signal pro-
cesses to be cancelled out. The no-signal process is assumed to be
unaffected by the presence of a target in the other channel.4 This
assumption can be formally expressed as:

F�B | STA
(t) � F�B | NT(t) (3)

F�A | STB
(t) � F�A | NT(t) (4)

where F�B | ST
A
(t) is the distribution of processing times for the

no-signal process �B as part of the single-target A only display,
and F�B | NT(t) is the equivalent no-signal process presented in the
context of a double-absent display. Under the assumption that the
no-signal process is context invariant, and therefore that both
Equalities 3 and 4 hold, the distribution of processing times for the
four stimulus displays in the modified task is:

FDT(t) � FA | DT(t) · FB | DT(t) (5a)

FSTA
(t) � FA | STA

(t) · F�B(t) (5b)

FSTB
(t) � F�A(t) · FB | STB

(t) (5c)

FNT(t) � F�A(t) · F�B(t) (5d)

If we expand Equation 2 to its constitute processing channels
using logarithmic expansions (see, e.g., Little et al., 2015):

CAND(t) �
log[FSTA

(t) · FSTB
(t)]

log[FDT(t)] (6a)

CAND(t) �
log[FA | STA

(t) · F�B(t) · F�A(t) · FB | STB
(t)]

log[FA | DT(t) · FB | DT(t)] (6b)

CAND(t)

�
log[FA | STA

(t)] � log[F�B(t)] � log[F�A(t)] � log[FB | STB
(t)]

log[FA | DT(t)] � log[FB | DT(t)]

(6c)

It is apparent that there are two unwanted terms in the numerator
of Equation 6c: F�A and F�B. These terms are included due to the
unavoidable processing of the absent locations on the single target
trials. This means that, compared with the theoretical form of
CAND (t) specified in Equation 1, the empirical mismatch form of
the equation includes two additional terms, both in the numerator,
neither of which is relevant to the capacity analysis.

Notably, Equation 5d from our modified-AND task is equivalent
(after log transformation) to the unwanted (nontarget) component
of the numerator of 6c, that is, the no-signal components of single
target A and single target B. We can therefore use response times
from this no-target condition to offset the nuisance terms in the
numerator. This new ratio, comparing trials from four different
empirical conditions, is specified in Equation 7:

CID(t) �
log[FSTA

(t) · FSTB
(t)]

log[FDT(t) · FNT(t)] (7)

We term the equation CID(t) [for identification] from here on-
ward to indicate we are using terms unique to the modified-AND
task that requires full-identification responses. It should be evident
here that Equation 7 will reduce to Equation 1 (the theoretical
specification of CAND [t]), because when expanded it is equal to
Equation 1 with identical terms (processes �A and �B) added to
the numerator and denominator under the assumption of context
invariant absent processes. Thus, Equation 7 can be used in con-
junction with the modified-AND task to assess capacity in AND
paradigms without the influence on nontarget processing. We
formally prove this below.

By invoking the assumption of context invariance, (that is, that
�A and �B distributions are unaffected by the value of the other
location) the �A and �B processes in the numerator and denom-
inator are identical. Expanding the terms in Equation 7 to constit-
uent processing channels gives:

CID(t) �
log[FA | STA

(t) · F�B | STA
(t) · F�A | STB

(t) · FB | STB
(t)]

log[FA | DT(t) · FB | DT(t) · F�A | NT(t) · F�B | NT(t)]

(8a)

4 We only make this assumption for the special case that the nontarget
channel contains no signal; we do not expect this property to hold for the
generalized distractor case (see Little et al., 2015). Although some readers
may be concerned that, as Colonius and Vorberg (1994) note, context-
invariance implies unlimited capacity, we believe the fundamental distinc-
tion between targets and no signal (or blank) displays can accommodate
this assumption.

Figure 6. Processing channel behavior in the modified-AND task requir-
ing unique identification of both stimulus locations. Processing terminates
on the slowest process in both double and single-target displays because all
responses require a unique identification of both components of the dis-
play. DT � double target; ST � single target, (subscript A denote indi-
vidual target locations).

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

193A SHOW ABOUT NOTHING



CID(t)

�
log[FA | STA

(t)] � log[F�B | STA
(t)] � log[F�A | STB

(t)] � log[FB | STB
(t)]

log[FA | DT(t)] � log[FB | DT(t)] � log[F�A | NT(t)] � log[F�B | NT(t)]

(8b)

Applying the assumption of context invariant nontarget process-
ing, the equation can be simplified to (terms have been reordered
for clarity):

CID(t)

�
(log[F�A(t)] � log[F�B(t)]) � (log[FA | STA

(t)] � log[FB | STB
(t)])

(log[F�A(t)] � log[F�B(t)]) � (log[FA | DT(t)] � log[FB | DT(t)])

(9)

We can now factor out the �A and �B terms from both the
numerator and denominator. To do so, we assume that processing
is unlimited capacity, with independent, parallel channels (UCIP
processing). Under the UCIP assumption we know that the original
formulation of CAND (t) (Equation 1, developed by Townsend &
Wenger, 2004b) equals 1 for all t. Because of our context invari-
ance assumption, Equation 9 is equivalent to adding identical �A
and �B terms to both the numerator and denominator of Equation
1 (essentially, adding a constant to the original CAND [t] expres-
sion). Thus, Equation 9 equals 1 for all time t under the assumption
of UCIP processing with context-invariant nontarget processes:

CID(t)

�
log[F�A(t)] � log[F�B(t)] � log[FA | STA

(t)] � log[FB | STB
(t)]

log[F�A(t)] � log[F�B(t)] � log[FA | DT(t)] � log[FB | DT(t)] � 1

(10)

As this equation equals one for all time t, multiplying both sides by
the denominator gives:

log[F�A(t)] � log[F�B(t)] � log[FA | STA
(t)] � log[FB | STB

(t)]�

log[F�A(t)] � log[F�B(t)] � log[FA | DT(t)] � log[FB | DT(t)]

(11)

From this expression we can cancel the equivalent terms from
either side (again, this operation depends on the assumption of
context-invariant processing of absent terms). This results in the
simplified expression:

log[FA | STA
(t)] � log[FB | STB

(t)] � log[FA | DT(t)] � log[FB | DT(t)]

(12)

which reexpressed as a ratio once more becomes:

CID(t) �
log[FA | STA

(t)] � log[FB | STB
(t)]

log[FA | DT(t)] � log[FB | DT(t)] � 1 (13)

The resulting expression in Equation 13 is equivalent to Equa-
tion 1, the original formulation of CAND (t), expanded to constit-
uent processing channels. That is, all nontarget processes have
been factored out and the coefficient is left comparing only the
target-channel completion times in single versus double target
displays - the mismatch between theory and empirical data has
been resolved. We term the coefficient formalized in Equation 7
CID(t) to reflect its application to a full-identification modification

of the AND paradigm. The coefficient will take an equivalent
value to CAND (t) under the assumption of context invariant absent
processing, and the assumption that the response entropy induced
by the addition of two extra response options in the modified task
is minimal—this seems to be the case given the following exper-
imental results. The capacity space of the coefficient is the same as
existing SFT tasks, because the equation resolves to Townsend and
Wenger’s (2004b) coefficient. Therefore, the UCIP model predicts
CID(t) � 1 for all t, with limited capacity predicting values of �1
and super capacity predicting values �1.

To demonstrate the suitability of CID(t) to measuring capacity
independent of changes in nontarget processing times, in Figure 7
we present simulated data systematically varying processing both
capacity and nontarget processing times within the modified-AND
task. These simulations were generated using a Linear Ballistic
Accumulator (LBA; Brown & Heathcote, 2008) and response
times were obtained by taking a maximum-time combination of
the two processes in each simulated trial (as the modified-AND
task requires fully exhaustive processing). Capacity was affected
by applying a modifier to the target channel drift rate v parameter
in double target trials. A modifier �1 speeds target processes when
both targets are presented, that is, super capacity. Conversely, a
modifier �1 induces limited capacity. Figure 7 illustrates how
CID(t) reliably reflects the true capacity of the model in all cases.
Interestingly, the absolute magnitude of capacity deviations
changes with the ratio of target/no-signal processing (affected by
fixing the drift-rate v of the nontarget channel to be faster, slower
or equal to the target drift-rate). This is a product of the exhaustive
decision rule; when the target process is slower than the nontarget
process (top left panel) the target-channel will drive response times
making the capacity limitation more salient. Another observation
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Figure 7. Simulated capacity coefficients from the modified-AND task.
Data were simulated using a parallel Linear Ballistic Accumulator (LBA)
process, response times (RTs) defined using a Maximum Time rule for all
conditions. Capacity was varied by applying a modifier c to the double-
target drift rate v parameter, where values of c � 1 indicate super capacity,
and vice versa. The legend shows the value of c for each simulation. We
simulate different relationships between the target and nontarget process
(faster, same, slower no-signal process) to show the novel coefficient does
not make the same erroneous predictions the original did in Figure 4. See
the online article for the color version of this figure.
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is that simulated capacity other than strictly unlimited does not
predict a fixed value but rather a rising (for super capacity) or
descending (for limited capacity) coefficient, at least when gener-
ated by an LBA model. We suspect this is related to the change in
relative contribution of DT and NT trials across time points.
Importantly, the direction of the coefficient is always as expected,
that is, CID(t) is always �1 for super capacity models, �1 for
limited capacity models, and � 1 for the unlimited model, and
unlike the standard-AND case (see Figure 4 above), varying non-
target channel processing rates does not change the capacity in-
terpretation.

Interim Discussion

Some readers may be concerned with the additional assumption
of context-invariant no-signal processing required for the above
derivations (see, e.g., Yang, Altieri, & Little, 2018, for examples
where the context variable assumption has been violated in audio-
visual tasks). One of the key benefits of SFT has been its non-
parametric, distribution independent properties that require mini-
mal assumptions about the underlying processes. Even though the
benchmark UCIP models assume context-invariant target process-
ing, we directly test this assumption with C(t). However, we note
that previous capacity applications have relied on the (false) as-
sumption that nontarget channels attract negligible processing
times, and our new assumption simply replaces the old one.
Further, to assess target capacity directly in an AND like task, this
added assumption is necessary. Consider a case where context
invariance does not hold for absence processing (i.e., the absent
process is systematically faster or slower in double-absent vs.
single-target trials). In this case, the value of CID(t) would vary
based on the (unidentifiable) degree of violation of context invari-
ance even if the generating target processes were unlimited capac-
ity. As such, the additional assumption is necessary to allow
inference, and is line with previous approaches by other authors
(see, e.g., Ben-David et al., 2014; Eidels et al., 2010).

An additional observation can be made regarding the effect of
base-time on the present equations. Base time refers to processing
time that arises as a result of additional processes not attributable
to processing the target locations (typically called nondecision
time). Townsend and Honey (2007) note that, in general, the
effects of base-time have opposite effects in OR and AND para-
digms, such that capacity would be underestimated in OR tasks
and overestimated in AND tasks (although they note the practical
effects are likely to be minimal). In our approach all response
times result from an exhaustive combination of two processes.
Therefore any base-time concerns are mitigated when considering
our CID(t).

Having established the new CID(t) measure and demonstrated its
effectiveness both analytically and through simulation, the next
step is to apply the measure empirically. To test the new measure
we performed a small study aiming to approximate the standard
Double-Factorial Paradigm dot task. Performance in this task has
been well studied (see, e.g., Eidels et al., 2015; Townsend &
Nozawa, 1995), providing an established benchmark to assess the
new measure and further validate the modified-AND task more
generally. This study also allows us to comment on an intriguing
theoretical question surrounding processing capacity. In general,
participants in the OR version of the dot detection task exhibit

slightly to-moderately limited capacity parallel processing (e.g.,
Townsend & Nozawa, 1995). In the AND version of the task
processing is still observed to be parallel, but capacity is often
reported as moderately super capacity (Eidels et al., 2015). As
noted earlier, CAND (t) may empirically overestimate capacity
depending on the relative processing time attached to target and
absent processes, whereas predictions in the OR task are unaf-
fected when processing is parallel self-terminating. CID(t) is robust
to this concern; as such the modified-AND task provides a useful
foil to the standard AND task for capacity comparisons. We
conducted a study in which participants completed three sessions
of a dot-detection task, where each session mapped to a different
response rule (OR, standard-AND, Modified-AND). This design
allowed us to compute capacity measures, COR (t), CAND (t), and
CID(t) for the three tasks, respectively. The details of the experi-
ment are presented below. The three experimental sessions shared
most methodological features so the details are presented together.

Method

Participants

Ten participants were recruited from within the School of Psy-
chology at the University of Newcastle to participate in three
experimental sessions (OR, standard-AND [AND], Modified-
AND [ID - for identification]) of approximately one hour each, and
were remunerated with gift cards (valued $25 per session). All had
normal or corrected-to-normal vision. Ages ranged from 23 to 36.

Stimuli and Design

Each experiment used a typical double-factorial design with
identical stimuli (bright dots on top and bottom of the screen). At
one factorial level target presence/absence was crossed with loca-
tion (top/bottom). At the second level, target salience (high/low)
was crossed with location (top/bottom). Overall, this design re-
sulted in nine unique stimulus combinations: four containing two
targets (HH � both targets in high contrast, HL � one high and
one low, LH, and LL), four containing one target (top-only target
high or low, bottom-only target high or low), and one display
containing no targets. Targets could appear in two possible loca-
tions, � 1 cm from the center of the display. Salience was scaled
between 0 (RGB[0,0,0], black) and 1 (RGB[255,255,255], white),
with high salience set at .7 (RGB[179,179,179]) and low salience
set at.2 (RGB[51,51,51]), both lighter than the black background.
The dots were displayed within a 250 � 250 pixel black box, and
the remainder of the screen was set at a constant gray value
(RGB[128,128,128]) throughout the experiment. Each dot was
approximately 5 mm in diameter, subtending a visual angle of
0.48° at a sitting distance of 60 cm. Each combination of Dot �
Location (i.e., both, one-top, one-bottom, no dots) was presented
an equal number of times; thus the proportion of each response
option changed between experiments but stimulus presentation
was constant. In the OR task participants were required to respond
yes to double and single-target displays and no to double-absent
displays. In the AND task participants were required to respond
yes to double-target displays and no to both single target and
double absent displays. In the ID task, each of these four displays
mapped to a unique response option.
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Procedure

Experimental order was randomized between participants using
a Latin square design and the procedure was identical on all three
experiments, apart from the response mapping. Participants were
invited to attend a computer laboratory at the University of New-
castle. At the beginning of each session participants completed a
short, untimed practice block designed to introduce them to the
response mapping for that session. Following this, a practice block
consisting of 80 trials (20 for each of the four display types:
double-target, single-top, single-bottom, no-target) was presented.
Each trial was preceded by a 500-ms fixation cross, followed by a
500-ms blank screen. Stimuli were then presented for 500 ms, or
until a response was made. If a response was not made, the
stimulus was removed and a blank, gray screen displayed until
either a response was made or 4 s had passed since the stimulus
onset. Feedback (correct or incorrect) was provided after each
trial. Following the practice block, a total of 15 experimental
blocks were presented, resulting in 1200 experimental trials. These
blocks were identical to the practice except feedback was not
provided, and the stimulus presentation was shortened to 150 ms.

For both the OR and the AND sessions, response options were
yes and no, mapped to the A and L keys and counterbalanced
between participants. In the OR task the yes response was mapped
to all three of the target-containing conditions, in the AND case the
yes response mapped only to the double-target condition. For the
ID task, responses were mapped to display type: response keys
were Q and S for single-target top and bottom respectively, both Q
and S simultaneously for double target, and L for no target. The
experiment program listened for 100 ms to ensure double key
presses were accurately detected. Pilot testing suggested that press-
ing both single-target keys for the double-target display was a
natural response option for this task.

Results

Descriptive Statistics

To ensure the Modified-AND task elicits similar processing to
the standard-AND task we first consider some basic descriptive
details. As shown in Table 1, accuracy was generally high. Each
experiment had an average accuracy of more than 90%; the ma-
jority of individual data sets had accuracy above this level as well.
Importantly, accuracy in the standard-AND and Modified-AND
tasks were practically equivalent (there was half a percent differ-
ence in accuracy between the tasks), suggesting that the modified
task does not adversely impair performance. We present mean
response times and accuracy for all conditions per experiment in
Table 2.

Analysis of Selective Influence

To test the assumption of selective influence (see, e.g., Houpt et
al., 2014) we implemented a distribution free Bayesian test pro-
posed by Heathcote et al. (2010). This test provides a Bayesian
equivalent of the more typically used Kolmogorov–Smirnov tests
(Houpt & Townsend, 2010) but performs better with small samples
(�100), making it more appropriate to use here (each of our four
double-target trials had 75 presentations). For all subjects in all

experiments the selective influence checks were successful in the
double-target trials, such that SHH�t� � SHL�t�,SLH�t� � SLL�t�
(where SHH(t) is the survivor function of response times in the HH
condition), and a stochastic dominance relationship between
SHH(t) � SLL(t) with a Bayes Factor of at least 5.

We also assessed the effect of the selective influence manipu-
lation for single-target displays. We suggested earlier that if the
single-target display did not show the same salience effect (par-
ticularly in the AND case) as the double-target, the target-
processes were not comparable and the capacity coefficient may be
tainted. Using the same nonparametric test as above, with two tests
per participant (selective influence in the left-target only and
right-target only displays), for the OR Task 18 of 20 tests showed
evidence for a salience effect in the expected direction with a
BF of at least 5. For the AND task, no tests showed evidence for
any salience effect. For the ID task, 18 of 20 tests showed
evidence for a salience effect in the expected direction with a
BF of at least 5. These tests provide useful evidence that the
single-target displays in the modified-AND task force exhaus-
tive processing and should allow a more robust capacity coef-
ficient in empirical settings.

Analysis of Architecture and Stopping Rule

To confirm that processing strategies remain consistent between
experiments (i.e., that subjects exhibit parallel, task-appropriate
processing) we examine two measures, called the MIC and the
SIC. Townsend and Nozawa (1995) showed that by contrasting the
four double target conditions (HH, HL, LH, LL, where H and L
refer to the salience of each target) we can characterize the pro-
cessing architecture and capacity of a system. In brief, the MIC can
be defined as MIC � MRTHH 	 MRTHL 	 MRTLH � MRTLL,
where MRTHH is the mean response time to the HH condition, and
so forth. Positive or negative MICs are associated with parallel
processing (with self-terminating or exhaustive processing respec-
tively) and an MIC � 0 denotes serial processing. By substituting
the survivor function of response times in place of the Mean
reaction time (RT) above we can compute the Survivor Interaction
Contrast. Importantly, an all positive SIC suggests a parallel self-
terminating process (which we expect for the OR task) and an all
negative SIC suggests parallel exhaustive processing (which we
expect for the AND and ID tasks).

We apply a nonparametric Bayesian approach proposed by
Houpt et al. (2017) to assess the MIC/SIC. This approach is based

Table 1
Accuracy by Subject for Each Experiment

Participant OR AND ID

Sub01 0.954 0.977 0.974
Sub02 0.873 0.855 0.905
Sub03 0.979 0.979 0.981
Sub04 0.966 0.950 0.968
Sub06 0.940 0.948 0.952
Sub07 0.966 0.978 0.978
Sub08 0.956 0.971 0.903
Sub09 0.913 0.834 0.951
Sub10 0.862 0.919 0.701
Sub11 0.930 0.854 0.904
M 0.936 0.927 0.922
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on a Dirichlet Process, and samples from the empirical response
time distributions for each double-target condition. Each posterior
sample is classified as belonging to one of five signature SFT
models (see, e.g., Houpt et al., 2014) or not matching any model,
based on a combination of MIC and SIC computed from the
sampled probability distributions. The total posterior classification
is compared with the prior weights on the models. We specified a
uniform prior on the model space such that all models were equally
likely in the prior. Importantly, all subjects showed strong evi-
dence (posterior model probability �.5) for a parallel architecture
and task appropriate stopping rule (self-terminating in the OR task,
exhaustive in both AND tasks). We can confirm these results by
examining the empirical SICs in Figure 8, where all the OR SICs
are generally all-positive, and both AND tasks show almost en-
tirely negative SICs. This allows us to be confident that any
observed differences in capacity are not due to changes in pro-
cessing architecture between tasks, and also that the capacity
predictions for the OR task are not affected by the nontarget
processing channels.

Analysis of Capacity

In Figure 9a we present the individual empirical capacity coef-
ficients, computed using COR (t), CAND (t) and CID(t) respectively.
It is clear that C(t) tends to be higher in the standard-AND case
(the red lines) than for either of the other experiments. In fact, for
all subjects CAND (t) exceeds 1 at some time. Contrast this with the

OR case where no subject shows super capacity, and the Modified-
AND case where only two subjects are marginally greater than 1
at any time. Both the OR and ID cases would suggest unlimited-
to-moderately limited capacity interpretations, whereas the AND
case would suggest super capacity for many participants.

For comparison purposes, in Figure 9b we show the capacity
coefficients from the AND experiment computed through the
standard CAND (t), and an alternate calculation performed by
substituting single-target trials from the participants OR session
(consistent with Eidels et al., 2015). Here, we use the standard
AND C(t) but use the single-target response times from the OR
task. This strategy has been used previously to ensure single and
double target trials both result from a yes response but should also
reduce the influence of nontarget processing. This substitution
strategy does reduces the differences between the AND and OR
cases—this is because response times for single-target trials in the
OR case are not affected by the no-signal process. However, even
here two subjects show evidence for super capacity that is not
present in the modified version of the task. We suspect this means
that the decisional stopping rule can have a nontrivial impact on
response time that limits the suitability of the substitution strategy
(see e.g., Eidels et al., 2015).

To better understand the reliability of our capacity findings we
also examined the average capacity coefficient for each task. We
bootstrapped the data to create 1,000 samples for each experimen-
tal session, computed a coefficient for each bootstrap � participant
combination, then averaged the values at each time-bin. The re-
sulting average capacity coefficients are shown in Figure 9c. The
group-level estimates were consistent with the individual C(t)
plots, and again highlight the discrepancies between C(t) computed
from a standard-AND task versus either the OR or the modified-
AND task.

Discussion

In this article, we have provided empirical evidence that the
capacity predictions used in most SFT applications may be af-
fected by previously unaccounted for effects of nontarget pro-
cesses. We showed that while theoretical predictions of most
models are affected, in the OR task the effects are limited to cases
where capacity may be of less importance to the researcher. We
identified major issues with capacity analysis in the standard-AND
task, such that it would be impossible to reliably assess processing
capacity in those tasks. We proposed a modification to the AND
task requiring participants to fully identify both stimulus locations
on all trials. This modification allowed the derivation of a modified
version of CAND (t) that is robust to the effects of nontarget
processing channels under certain (reasonable) assumptions. Re-
lying on those assumptions, along with useful properties of the
modified-AND task, we were able to show that the C(t) could be
empirically estimated without bias using our modified capacity
coefficient, termed CID(t), computed from data collected in the
modified experimental task.

We applied the new coefficient, alongside the existing COR (t)
and CAND (t), to provide evidence that processing capacity for two
dots of light is limited under both self-terminating and exhaustive
decisional stopping rules, when the effect of nontarget channel
processing times are accounted for with the modified coefficient.
These results suggest that the standard-AND task may often em-

Table 2
Mean RT (With SD) and Mean Accuracy (With SEM) for Each
Condition and Experiment

Condition M RT (ms) M accuracy

OR-HH 386.35 (104.40) 0.995 (0.002)
OR-HL 402.58 (120.16) 0.998 (0.001)
OR-LH 398.38 (116.17) 0.996 (0.002)
OR-LL 459.54 (167.20) 0.953 (0.007)
OR-HX 398.23 (129.89) 0.990 (0.003)
OR-LX 458.68 (186.10) 0.862 (0.009)
OR-XH 399.91 (146.10) 0.992 (0.002)
OR-XL 458.10 (156.21) 0.872 (0.009)
OR-XX 536.08 (182.00) 0.891 (0.006)
AND-HH 459.52 (120.24) 0.972 (0.005)
AND-HL 521.53 (150.71) 0.839 (0.012)
AND-LH 529.88 (160.11) 0.835 (0.012)
AND-LL 530.24 (148.10) 0.753 (0.014)
AND-HX 495.17 (168.79) 0.930 (0.007)
AND-LX 501.03 (191.92) 0.963 (0.005)
AND-XH 495.81 (178.60) 0.960 (0.005)
AND-XL 490.65 (175.74) 0.975 (0.004)
AND-XX 451.09 (145.03) 0.991 (0.002)
ID-HH 438.86 (109.15) 0.990 (0.003)
ID-HL 486.89 (121.74) 0.872 (0.010)
ID-LH 483.87 (123.95) 0.885 (0.010)
ID-LL 498.50 (131.32) 0.837 (0.011)
ID-HX 456.82 (133.87) 0.968 (0.004)
ID-LX 498.43 (148.52) 0.880 (0.008)
ID-XH 452.56 (105.25) 0.971 (0.004)
ID-XL 500.33 (150.12) 0.881 (0.008)
ID-XX 528.75 (162.00) 0.956 (0.004)

Note. RT � reaction time. H, L, and X refer to salience levels high, low,
and absent, respectively. AND, OR, and ID refer to the three experimental
designs.
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pirically overestimate processing capacity and highlights that these
previously unidentified effects have likely tainted earlier reported
findings. The modified-AND task provided results that were much
more consistent with the standard OR findings than the existing
AND task. This result highlights the importance of accounting for
the effect of the no-signal channel—previously published results
(e.g., Eidels et al., 2015; Townsend & Nozawa, 1995) reported
fundamental processing capacity differences even when the same
subjects viewed the same stimuli using the same processing archi-
tectures. Our findings suggest the previously reported super ca-
pacity in AND tasks was inflated by the effect of the no-signal
channel. Occam’s Razor suggests processing capacity probably
does not change with task instructions when our results are taken
into account.

A reviewer raised the question of whether the differences we
report between single target conditions in the OR and AND tasks
could be remedied by changing the task instructions such that
instead of target and no target the options were more neutral (e.g.,
condition A or condition B). This is, in effect, what our novel task
achieves (albeit with the extension to four responses). We suspect
that simply relabeling instructions in the standard AND task would
not be sufficient to overcome the potential for self-termination on
the nontarget channel. An alternate account for the single-target
discrepancy is that the salience effect could simply be weaker in
the AND task. This would certainly explain why we see little-to-no
difference between the high and low salience single targets. How-
ever, this account does not explain why the salience effect is strong
for double-target trials in both AND and OR tasks. Additionally, a
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Figure 8. Empirical survivor interaction contrasts (SICs) for each person in each experiment. All subjects
showed evidence for parallel processing with a task appropriate stopping rule. See the online article for the color
version of this figure.
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weak salience effect on its own would not explain the super
capacity that we observe in standard AND tasks, nor would it
explain why the issues are resolved in our novel ID version of the
task. We encourage further exploration of these issues but suspect
capacity analysis in the standard AND task will prove untenable.

Importantly, the modified-AND task proposed herein retains all
the benefits of the double-target analyses in regular AND tasks,
and we have shown that neither accuracy nor processing strategies
were affected by the change in task. The task provides unique
benefits on single-target displays as it ensures fully exhaustive
processing and allows the researcher to account for the effect of
nontarget processes when considering capacity. The modified-
AND task proposed here is, in essence, a 2 � 2 identification task
with the addition of a salience manipulation. Until now, investi-
gating properties such as processing architecture and stopping rule

in such tasks was difficult, if not impossible (Howard, Eidels,
Silbert, & Little, 2017). We have shown in this article that we can
utilize the full suite of analyses from the Systems Factorial Tech-
nology (Townsend & Nozawa, 1995) framework in this modified
task, and did so to investigate stopping rule, architecture, and
capacity. Our task can naturally extend to the distractor-modified
task used by authors such as Little et al. (2015) and Ben-David et
al. (2014) by incorporating a salience manipulation on the distrac-
tor items, and implementing the unique identification response
strategy developed herein. In theory, our task could also be ame-
nable to existing identification-based analyses (e.g., General Rec-
ognition Theory, Ashby & Townsend, 1986; Multidimensional
Scaling, Kruskal, 1964; see, e.g., Howard et al., 2017 for further
discussion). The developments presented herein provide a useful
alternative to the distractor-based Resilience functions of (Little et

Figure 9. Top Left: Empirical capacity coefficients for each participant in each Experiment, computed with the
standard specification of the respective C(t). (Top Right) Comparison of the standard specification of CAND (t)
with the substitution strategy used by various authors—double target response times from the AND task
contrasted against single target response times from the OR task (within subjects). (Bottom) Group level
averaged capacity coefficients for each task. The colored regions represent 1,000 bootstrapped average capacity
coefficients for each of the tasks. See the online article for the color version of this figure.
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al., 2015) when the presence of a distractor is not warranted but
when researchers wish to explore processing capacity without the
effect of nontarget processing channels. Importantly, our work
highlights the importance of empirically validating critical as-
sumptions; previous authors have assumed nontarget channels to
attract little to no processing, which we have shown here is
unlikely to be true.
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